Contents

COCONUT-SVSM System Call ABI for the X86-64 Architecture 2

System Call Architecture 2
System Call Classes 2
Parameter Types Lo 2
Error Codes 3
ABI Definition 3

Class O0-BasicSystem Calls 3
EXIT . . e 3
MMAP . . e 4
MUNMAP . . . 4
MRESIZE 4
EXEC . . . e 5
WAIT . . 5
THREAD_CREATE 5
THREAD_JOIN e 6
BATCH e 7
OPEN_PHYSMEM 8
CLOSE e 9

Class 1-FileSystem Calls 9
OPEN 9
READ 10
WRITE e 10
SEEK 10
OPENDIR 11
READDIR e 11

Class 2 - Event Subsystem Calls 12
WAIT_FOR_EVENT 12
TRIGGER_EDGE 12

Class 3 VMM Subsystem Calls 13
CAPABILITIES e 13
VM_OPEN 13
VM_CAPABILITIES 14
MMIO_EVENT 14
IOIO_EVENT 15
SET_MEM_STATE 15

Class 4 VCPU System Calls 16
VCPU_CREATE e 16
SET_STATE 16
GET_STATE 17

COCONUT-SVSM System Call ABI for the X86-
64 Architecture

System Call Architecture

The system call architecture of COCONUT-SVSM defines system call classes.
Each system call is identified by a 32-bit class number and a separate 32-bit
system call number. Both numbers form a Global System Call Number of
64-bit with the class stored in the upper 32 bits and the system call number in
the lower 32 bits.

System Call Classes

1. Class 0 maps the basic system calls used to manage virtual memory, thread
and process life-times and system call batching.

2. Class 1 contains system calls specific to file objects and file system access
in general.

Parameter Types

The COCONUT-SVSM system call ABI uses standard parameter types where
appropriate. The common types are listed below.

Primitive Types

Type Size in Bytes Description

832 4 Signed 32-bit integer

u32 4 Unsigned 32-bit integer

s64 8 Signed 64-bit integer

u64 8 Unsigned 64-bit integer

CString 8 Pointer to a 0-terminated string
VirtAddr 8 Canonical unsigned virtual address
ObjHandle 4 Handle for a kernel managed object
PID 4 Process ID - Aliases u32

TID 4 Thread ID - Aliases u32

MMFlags - Memory Mapping Flags The following flags are defined for the
memory mapping system calls.

Flag Description

MAP_WRITE Writable mapping

MAP_PRIVATE Writes to memory remain private to the process
MAP_ANONYMOUS Mapping is not backed by an object

MAP_FIXED Mapping requires a fixed virtual address

Error Codes

The standard error codes returned by COCONUT-SVSM are listed below. Each
error code is of type u32. Every value X is returned as O - X upon return from
a system call.

Error Code Value Description
EINVAL 1 Invalid input parameter
ENOSYS 2 System call not implemented
ENOMEM 3 Not enough memory to perform operation
EPERM 4 Insufficient permissions to execute system call
EFAULT 5 Fault happened while executing system call
EBUSY 6 Device or resource busy
ENOTFOUND 7 Resource not found

8

ENOTSUPP Operation not supported

ABI Definition

The control transfer between user-mode and kernel-mode is done via software
interrupts. Currently the vector 0x80 is used. The system call ABI described
below is designed to allow an easy switch to the SYSCALL instruction.

Parameters to system calls are passed via CPU registers. The register assignment
is listed in the table below:

Register In Out

RAX Global Syscall number Return code
RCX - Undefined
RDI Parameter 1 Unmodified
RSI Parameter 2 Unmodified
R8 Parameter 3 Unmodified
R9 Parameter 4 Unmodified
R10 Parameter 5 Unmodified
R11 - Undefined
RFLAGS - Unmodifed

All other registers remain unmodified from the perspective of the process and
have no influence on the execution of the system call.

Class 0 - Basic System Calls
EXIT
Exits the calling process, including all threads.

System call number: 0

Parameters

Parameter Type Description

1. exit_code u32 Exit code

Returns This system call does not return.

MMAP

Creates a new virtual memory mapping in the process address space.

System call number: 1

Parameters
Parameter Type Description
1. 0bj ObjHandle Object handle
2. addr VirtAddr Virtual address hint
3. offset u64 Object offset
4. length u64 Length
5. flags MMFlags Flags

Returns Unsigned virtual address on success, Error code on failure.

MUNMAP

Removes virtual memory mapping from the process address space.

System call number: 2

Parameters

Parameter Type Description

1. addr VirtAddr Virtual address
2. length u64 Length to unmap

Returns 0 on success, error code on failure

MRESIZE

Changes the size of a virtual memory mapping.

System call number: 3

Parameters

Parameter Type Description
1. Base VirtAddr Virtual base address
2. Length u64 New absolute length

Returns 0 on Success, error code on failure.

EXEC

Create a new process and run it immediately. The new process get a new root
directory in the file-system and will only be able to access files in or below that
directory. The root directory is relative to the calling processes root directory.

System call number: 4

Parameters
Parameter Type Description
1. file CString Path to executable
2. root CString Path do process root directory

3. flags PFlags Execution flags

Returns PID of new process on Success, error code on failure.

WAIT
Wait for a child process to exit and return exit code.

System call number: 5

Parameters

Parameter Type Description

1. pid PID PID of the child process

Returns Exit code of process PID on Success, error code on failure.

THREAD__ CREATE

Creates a new thread associated with the calling process and executes it imme-
diately. The stack and the initial instruction pointer of the thread are passed
via the X86Regs struct.

System call number: 6

Parameters

Parameter Type Description

1. regs X86Regs Initial register state upon thread launch

Struct X86Regs

#[repr(C)]
struct X86Regs {
// General purpose registers

rib5: u64,
ri4d: u64,
rl13: ub4,
rl2: ub4,
rill: u64,
rl10: u64,
r9: ub4,
r8: ub4,
rbp: ub4,
rdi: u64,
rsi: u6é4,
rdx: u64,
rcx: ub4,
rbx: ub4,
rax: u64,

/// Instruction pointer
rip: u64,

/// Reserved MBZ

rsvdl: u64,

/// RFlags

flags: u64,

/// Stack pointer

rsp: ub4,

/// Reserved MBZ

rsvd2: u64,

Returns TID on success, error code on failure.

THREAD_JOIN
Waits for a thread to finish execution.

System call number: 7

Parameters

Parameter Type Description

1. tid TID Thread ID to wait for

Returns 0 on success, error code on failure.

BATCH

Execute multiple system calls at once. The batch_ptr parameter points to an
array of struct SysCallln in process memory describing all system calls to
execute. The COCONUT kernel will start to execute them in order (but does
not necessarily complete in order) and writes the results into an array of struct
SysCallOut pointed to by the compl_ptr parameter. The order in which results
are written is not guaranteed to match the order in the struct SysCallln array.
The arrays pointed to by batch_ptr and compl_ptr must have at least entries
number of elements.

None of the system calls can be considered finished before the BATCH system
call returns, even when another thread observes it as finished in the compl_ptr
array.

Calling the BATCH system call recursively is not supported and considered an
error.

System call number: 8

Parameters:

Parameter Type Description

1. batch_ptr VirtAddr Pointer to an array of struct SysCallln
2. compl_ptr VirtAddr Pointer to an array of struct SysCallOut

3. entries u32 Number of entries in the arrays pointed to by
batch_ptr and compl_ptr
4. flags BFlags Batching flags

Returns The number of executed system calls from the struct SysCallln
array on success, error code otherwise. Note that a non-error return code does
not indicate all executed system calls where successful. The calling process must
evaluate the struct SysCallOut array to check for status of individual system
calls.

Definition of struct SysCallln

#[repr(C)]
struct SysCallln {
/// Global SysCall number
nr: u64,
/// User data - Used for completion notifcation
user_data: u64,
/// Parameters
parameters: [u64, 5],

Definition of struct SysCallOut

#[repr(C)]

struct SysCallOut {
/// System call result
result: s64,
/// User-data from SysCallln
user_data: u64,

Definition of BFlags The batching flags, of BFlags tell the COCONUT
kernel how to execute the system calls. The defined flags are:

Flag Description

BF_STRICT_ORDER Execute system calls strictly in order, wait

for one call to finish before starting the next one
BF_ERROR_STOP Stop execution of further system calls when

a call in the array returns an error code

OPEN_PHYSMEM

Get an object handle for physical memory access. The handle returned by this
system call can be used with the MMAP to map portions of physical memory into
the process address space.

System call number: 9
Parameters This system call has no parameters.

Returns ObjHandle on success, error code on failure.

CLOSE
Closes an open ObjHandle.

System call number: 10

Parameters

Parameter Type Description

1. handle ObjHandle Object handle to close

Returns Always returns 0, even if called with an invalid handle.

Class 1 - File System Calls
OPEN
Opens an existing file in the file-system.

System call number: 0

Parameters

Parameter Type Description

1. path CString Full path of file to open

2. mode FS_MODE Opening mode (read, write, append, ...)
3. flags FS_FLAGS File open flags

Returns 0ObjHandle on success, error code on failure.

Definition of FS_MODE

Flag Description

FM_READ Open file for reading
FM_WRITE Open file for writing
FM_APPEND Place file pointer at end of file
FM_TRUNC Truncate file to zero

Definition of FS_FLAGS

Flag Description
FF_CREATE Create file if it does not exist

READ

Read data from the current position in an open file.

System call number: 1

Parameters

Parameter Type Description

1. handle ObjHandle Handle of open file to read from

2. buffer VirtAddr Pointer to buffer where to write file data
3. size u64 Number of bytes to read

Returns Number of bytes written to buffer on success, error code on failure.
Reading 0 bytes indicates the end of file has been reached.

WRITE
Write data to the current position into an open file.

System call number: 2

Parameters

Parameter Type Description

1. handle ObjHandle Handle of open file to write to

2. buffer VirtAddr Pointer to buffer where to read file data to write
3. size u64 Number of bytes to write

Returns Number of bytes written to file on success, error code on failure.

SEEK
Changes the file position pointer.

System call number: 3

Parameters

Parameter Type Description

1. handle ObjHandle Handle of open file

2. offset s64 Offset value for changing file position

3. flags SFLAGS Flags indicating how to interpret offset

10

Returns New file position pointer on success, error code on failure.

Definition of SFLAGS

Flag Description

SK_ABS offset is an absolute file position
SK_REL offset is added to current file position
SK_END offset is subtracted from end-of-file postion

OPENDIR

Opens a directory for reading directory entries.

System call number: 4

Parameters

Parameter Type Description

1. path CString Path to directory to open

Returns 0ObjHandle for directory on success, error code on failure.

READDIR
Read directory entries from a directory handle.

System call number: 5

Parameters

Parameter Type Description

1. handle ObjHandle Handle of open directory
2. dirents VirtAddr Pointer to array of struct DirEnt
3. size u64 Number directory entries to read

Returns Number of directory entries read on success, error code on failure. A
return value of 0 means there are no more entries to read.

11

Definition of struct DirEnt

/// Mazimum length of file name in bytes
static const F_NAME_SIZE: usize = 256;
/// Files

static const F_TYPE FILE: u8 = O;

/// Directories

static const F_TYPE DIR: u8 = 1;

#[repr(C)]
struct DirEnt {
/// Entry name
file name: [u8; F_NAME_SIZE],
/// Entry type
file_type: u8,
/// File size — O for directories
file_size: u64,

Class 2 - Event Subsystem Calls

Events are handled via kernel event objects. These are created by other subsys-
tems and have a common interface. Currently only edge-triggered events are
supported.

WAIT_FOR__EVENT
Sleep until event is triggered.

System call number: 0

Parameters

Parameter Type Description

1. handle O0ObjHandle Event handle

Returns 0 on success, error code on failure.

TRIGGER__EDGE
Trigger event and wake up all waiters.

System call number: 1

Parameters

12

Parameter Type Description

1. handle ObjHandle Event handle

Returns 0 on success, error code on failure.

Class 3 VMM Subsystem Calls

The system calls in this class are uses to manage state of virtual machines
controled by COCONUT-SVSM.

CAPABILITIES

Query values from the features and capabilities array of the VMM subsystem.
Each value is of type u64.

System call number: 0

Parameters

Parameter Type Description

1. index u32 Index into capabilites array

The indexes below are specified:

Index Meaning

0 Size of the capabilities array
1 Bitmap with available VM indexes
2 Global Feature bitmap

Feature bits are TBD.
Returns Capabilities array value at the requested index, 0 if index is invalid.

VM_ OPEN
System call number: 1

Get an object handle for a given VM index. Valid indexes can be obtained via
the CAPABILITIES(1) system call. Each index can be opened by exactly one
user-space process at any time.

Closing the ObjHandle returned by this system call will shut down and destroy
all VM state managed by the COCONUT kernel.

13

Parameters

Parameter Type Description

1. index u32 VM Index to open

Returns ObjHandle for VM on success, error code on failure.

VM_ CAPABILITIES
Query capabilities array of a virtual machine.

System call number: 2

Parameters

Parameter Type Description

1. vm_obj ObjHandle Object handle for virtual machine
2. index u32 Index into capabilites array

The indexes below are specified:

Index Meaning

0 Size of the capabilities array
1 Number of VCPUs for this VM

Returns Capabilities array value at the requested index, 0 if index is invalid.

MMIO_EVENT

Create an event object for MMIO events from a given VM object. The returned
evt_obj provides an memory mappable area for communicating event details.

System call number: 3

Parameters

Parameter Type Description

1. vm_obj ObjHandle Object handle for virtual machine

2. pstart u64 Physical start address to monitor (inclusive)
3. pend u64 Physical end address to monitor (exclusive)

Returns Event object on success, error code on failure.

14

IOIO_EVENT

Create an event object for IOIO events from a given VM object. The returned
evt_obj provides an memory mappable area for communicating event details.

System call number: 4

Parameters

Parameter Type Description

1. vm_obj ObjHandle Object handle for virtual machine

2. start u32 IO port start address to monitor (inclusive)
3. end u32 IO port end address to monitor (exclusive)

Returns Event object on success, error code on failure.

SET_MEM_ STATE
Change accessibility state of physical memory for a given vm_obj

System call number: 5

Parameters
Parameter Type Description
1. vm_obj ObjHandle Object handle for virtual machine
2. paddr u64d Physical address to change state for
3. page_size u64 Page-size to assume - must be a supported
system page-size
4. state MSFLAFGS New Memory state
Definition of MSFLAGS
Flag Description
MS_PRIVATE Memory is private
MS_READ Memory is readable by VM
MS_WRITE Memory is writable by VM
MS_EXEC Memory is executable by VM

Returns 0 on success, error code on failure.

15

Class 4 VCPU System Calls
VCPU__CREATE

Creates a handle for a VCPU in a given VM context. The handle provides a 4
KiB page of memory which can be mapped via MMAP into the process memory.

The VCPU can be run with the WAIT_FOR_EVENT () system call.

System call number: 0

Parameters

Parameter Type Description

1. vm_obj ObjHandle Object handle for virtual machine

2. vepu_idx u32 Index of VCPU, must be smaller than

the number of VCPUs reported by
VM_CAPABILITIES(1)

Returns O0bjHandle for VCPU on success, error code on failure.

SET_STATE
Change VCPU state.

System call number: 1

Parameters

Parameter Type Description

1. vcpu_obj ObjHandle Object handle for VCPU

2. type u32 Type of state to change

3. data VirtAddr Virtual address of a type-specific data structure

in process memory

The defined types are:

Type Data Structure Description

GPR struct X86Regs General purpose registers (including RIP)

VMSA_GPA struct VmsaGpa Guest physical address of VMSA (AMD
only)

Returns 0 on success, error code on failure

16

GET_STATE
Query VCPU state.

System call number: 2

Parameters

Parameter Type Description

1. vcpu_obj ObjHandle Object handle for VCPU

2. type u32 Type of state to change

3. data VirtAddr Virtual address of a type-specific data structure

in process memory

The defined types are similar to the SET_STATE call.

Returns 0 on success, error code on failure

17

	COCONUT-SVSM System Call ABI for the X86-64 Architecture
	System Call Architecture
	System Call Classes
	Parameter Types
	Error Codes
	ABI Definition

	Class 0 - Basic System Calls
	EXIT
	MMAP
	MUNMAP
	MRESIZE
	EXEC
	WAIT
	THREAD_CREATE
	THREAD_JOIN
	BATCH
	OPEN_PHYSMEM
	CLOSE

	Class 1 - File System Calls
	OPEN
	READ
	WRITE
	SEEK
	OPENDIR
	READDIR

	Class 2 - Event Subsystem Calls
	WAIT_FOR_EVENT
	TRIGGER_EDGE

	Class 3 VMM Subsystem Calls
	CAPABILITIES
	VM_OPEN
	VM_CAPABILITIES
	MMIO_EVENT
	IOIO_EVENT
	SET_MEM_STATE

	Class 4 VCPU System Calls
	VCPU_CREATE
	SET_STATE
	GET_STATE

