
1

Alternate Injection Support for SEV-SNP
Virtual Machines

Jon Lange (jlange@microsoft.com)
May 13, 2024

Background
The Alternate Injection feature of SEV-SNP enhances the security of a confidential VM by
preventing the untrusted host from presenting unexpected interrupts or exceptions, while still
preserving the standard interrupt dispatch semantics inherent in the x86 architecture. Use of
Alternate Injection requires management logic within the guest running at a higher VMPL, such as
an SVSM, and also requires cooperation from the host to ensure that pending interrupts can be
signaled through the management VMPL. This document describes extensions to the GHCB and
SVSM specifications that enable support for the use of Alternate Injection.

Interrupt Delivery Model

Requirements
The primary motivation for supporting Alternate Injection is to ensure that the untrusted hypervisor
cannot inject arbitrary interrupt or exception vectors into a guest VM, instead ensuring that
interrupt presentation can only be performed by a trusted entity (the SVSM). Satisfying the goal of
insulating the guest OS from malicious interrupts injected by the hypervisor, requires insulating the
SVSM itself from malicious interrupts injected by the hypervisor. This means that an SVSM that
wishes to make use of Alternate Injection should itself be prepared to enforce the use of Restricted
Injection. Consequently, any hypervisor that offers support for Alternate Injection must also
support Restricted Injection.

Because the SVSM requires its own interrupt sources in addition to the interrupt sources
associated with the guest OS, the hypervisor is expected to track a separate set of interrupt
sources for each VMPL enabled for a given vCPU. Interrupts associated with GHCB requests
initiated by the SVSM (e.g. #HV IPI and #HV timers) are assigned vectors according to the GHCB
ABI. Other interrupt sources managed by the host, such as for virtual devices, are associated with
the appropriate VMPL using a host-specific virtualization interface not documented here; this
document assumes only that any such host-specific interface will carefully prescribe such VMPL
association so there is no ambiguity on the part of guest OS or SVSM software.

SVSM involvement is required to present interrupts to the guest OS, so when a guest OS interrupt
becomes deliverable, it is necessary to cause the SVSM to run. Consequently, some sort of
preemption mechanism is required to cause the SVSM to take control when required to facilitate

mailto:jlange@microsoft.com

2

handling of guest interrupt state. To take advantage of existing preemption mechanisms, the
hypervisor will treat such notification as an interrupt source, and the SVSM must register an
interrupt vector with the hypervisor, to be delivered using the existing Restricted Injection interrupt
delivery model. The hypervisor is expected to cause the SVSM to run any time delivery of an
interrupt would result in injection of #HV to the SVSM.

GHCB Changes

Extended Interrupt Information
The interrupt descriptor at the base of the #HV doorbell page is extended to include two 16-bit
words which convey additional information about interrupts or events related to interrupt
processing in lower VMPLs. The first 16-bit word (“PendingEvent”) retains its existing meaning. The
second 16-bit word is defined as “InjectionInfo”, and its bits are defined to have the following
meaning.

- Bit [0] is NoEoiRequired as defined in the current GHCB specification.
- Bits [7:1] are reserved for future use.
- Bit [8] indicates that interrupt information is available for VMPL 1.
- Bit [9] indicates that interrupt information is available for VMPL 2.
- Bit [10] indicates that interrupt information is available for VMPL 3.
- Bits [15:11] are reserved for future use.

To indicate separate interrupt sources for each VMPL, the #HV doorbell page is further extended to
define the first 256 bytes. Bytes 0-31 contain interrupt information associated with SVSM itself.
Bytes 32-63 are reserved for future use. Bytes 64-97 contain the extended interrupt descriptor
(defined below) associated with VMPL 1. Bytes 128-159 contain the extended interrupt descriptor
associated with VMPL 2. Bytes 192-223 contain the extended interrupt descriptor associated with
VMPL 3.

Whenever the hypervisor delivers an interrupt for a lower VMPL (or an event, such as a request to
revert to host-managed APIC emulation), it will set the appropriate interrupt bit(s) in the extended
interrupt descriptor corresponding to the lower VMPL, and it will also set bit 1, 2, or 3 in the second
16-bit word of the SVSM’s extended interrupt descriptor to indicate which VMPL has pending
interrupt evaluation work. If the bit corresponding to VMPL activity transitions from zero to one, the
hypervisor will send an interrupt to the SVSM indicating that guest interrupt processing is required.

The extended interrupt descriptor associated with each non-zero VMPL is defined to include
sixteen 16-bit words (for a total of 32 bytes) which together comprise a 256-bit vector describing
pending interrupts. Only interrupt vectors in the range 31-255 may be represented in this vector,
leaving the low 31 bits available for additional information. Presenting multiple interrupt sources at
once permits efficient delivery of interrupts by the SVSM to the guest OS by minimizing the number
of interactions that must occur with the hypervisor.

3

The first 16-bit word in the extended interrupt descriptor, corresponding to bits 0-15, is defined as
follows.

- Bits [7:0] describe the vector of a single pending interrupt, which must have a value in the
range 31-255. This field is used if only a single vector is pending, or if any level-sensitive
interrupt is pending.

- Bit [8] indicates that an NMI is pending.
- Bit [9] indicates that a virtual #MC is pending.
- Bit [10] indicates the trigger mode of the interrupt described in bits [7:0]. A value of one

indicates a level-sensitive interrupt, and a value of zero indicates an edge-triggered
interrupt.

- Bits [13:11] are reserved for future use.
- Bit [14] indicates whether any interrupt is indicated in bits 31-255 of the extended interrupt

descriptor. Only edge-triggered interrupts may be signaled in the extended interrupt
descriptor.

- Bit [15] is reserved for future use.

The 16-bit word at byte offset 2, corresponding to bits 16-31, has the following meaning.

- Bits [14:0] are defined for future use.
- Bit [15] corresponds to vector 31 in the 256-bit extended interrupt descriptor.

The 16-bit word at byte offset 4 corresponds to vectors 32-47 in the extended interrupt descriptor,
and subsequent 16-bit words have similar meanings.

When the hypervisor presents any edge-triggered interrupt, it will ensure that either a single
interrupt is described in bits 7:0 of the page, or that bit 14 is set and the corresponding bits are set
in bits 31-255 of the page. Example pseudo-code is included in this document.

When the hypervisor presents a level-sensitive interrupt, it will set bits 7:0 to indicate the highest
priority level-sensitive interrupt in progress, as well as setting bit 10 to indicate that a level-
sensitive interrupt is pending. The hypervisor may change the value of bits 7:0 if a higher priority
level-sensitive interrupt is presented. Example pseudo-code is included in this document.

When the SVSM wants to consume an interrupt for a lower VMPL, it should first check to see
whether bits 7:0, as well as bits 10 and 14, describe a single, edge-triggered interrupt. If so, the
SVSM can consume the interrupt by atomically clearing bits 7:0, ensuring that bits 10 and 14 have
not changed; if this succeeds, the hypervisor will consider the interrupt consumed without
requiring any EOI. If bit 14 indicates that multiple interrupts are present, the SVSM can atomically
clear bit 14, and then sweep bits 31-255 looking for specific interrupt vectors, atomically clearing
those that it finds; these interrupts are considered consumed without requiring any EOI. If the
SVSM observes that a level-sensitive interrupt is present, it should consume what it finds in bits 7:0
and track a level-sensitive interrupt in progress. When handling an EOI for a level-sensitive
interrupt, the SVSM must send an explicit EOI to the hypervisor. To resolve possible race

4

conditions between an EOI request and subsequent delivery of a higher-priority level-sensitive
interrupt, all level-sensitive EOI requests will specify the vector for which the EOI applies, using a
new #HV EOI call. Example pseudo-code is included in this document.

Negotiating Functionality

Enabling Alternate Injection
Hypervisor support for extended interrupt information and Alternate Injection is enumerated in the
GHCB FEATURES bitmask. Bit 7 indicates the availability of extended interrupt information. If bit 7
is set, the SVSM can configure interrupt policy to enable the use of Alternate Injection.

If an SVSM detects support for extended information, then the SVSM can request the Alternate
Injection feature during VMSA creation. Any time a VMSA is created using the SNP AP Creation
GHCB call, and the new VMSA specifies the Alternate Injection feature in the SEV feature mask, the
hypervisor will activate extended interrupt delivery for the vCPU.

Alternate Injection is not supported for VMPL 0 itself. Specifying Alternate Injection for any VMSA
associated with VMPL 0 is considered an error. In addition, Alternate Injection is not supported
unless VMPL 0 is using Restricted Injection. Specifying Alternate Injection for any non-zero VMSA
associated with a vCPU that is not using Restricted Injection for VMPL 0 is considered an error.

Supporting Multiple Guest Runtimes
Code executing within the guest OS VMPL typically spans multiple runtime components, such as a
virtual firmware as well as an operating system, and each of these components may have different
capabilities with respect to APIC handling: some components may know how to make use of the
SVSM APIC Protocol and some may rely on the hypervisor to emulate the APIC using the existing
X2APIC MSRs conveyed via the GHCB protocol. It must be possible to permit different
configurations for each of these components.

The SVSM is required to have knowledge of whether the first component that executes can support
the Alternate Injection protocol. If the SVSM does not know that the first component to execute will
support the SVSM APIC Protocol, then it must not enable Alternate Injection in the guest VMSA. If
the SVSM does know that the first component to execute will support the SVSM APIC Protocol, then
it may enable Alternate Injection prior to the first guest entry; the first guest component must either
make use of the protocol or it must request that the protocol be disabled. The initial version of the
SVSM APIC Protocol permits the enumeration of features and the ability to control their use so that
the guest can make this determination and configure itself as required.

When there is a handoff from one component to another (such as from a UEFI virtual firmware to a
guest operating system), the component terminating its execution must be prepared to disable the
use of Alternate Injection unless it knows that the component taking over is prepared to continue
use of Alternate Injection. Since there may not be a mechanism for the two components to
negotiate this directly, the SVSM APIC Protocol supports a registration mechanism to determine
the behavior across the handoff. Three states are defined.

5

- “Enabled” means that Alternate Injection is enabled and can be disabled.
- “Locked” means that Alternate Injection is enabled and cannot be disabled. It is possible

to transition back and forth between Locked to Enabled.
- “Disabled” means that Alternate Injection is disabled and cannot be reenabled. It is

possible to transition from Enabled to Disabled, but not from Locked to Disabled. It is not
possible to leave the Disabled state.

The following flow illustrates how this mechanism might be used in the case of a transition from a
UEFI-based firmware to a guest OS.

- Prior to executing ExitBootServices, a guest OS that understands the SVSM APIC Protocol
should detect the availability of that protocol and determine whether it is usable. If so, it
should request that the SVSM enter the Locked state.

- During the execution of ExitBootServices, the firmware (which does not know the intention
of the guest OS) should request that the SVSM enter the Disabled state. If the guest OS
declared its intention to use Alternate Injection, this call will fail (and this failure must be
tolerated by the firmware). If the guest OS did not declare its intention to use Alternate
Injection, then this call will disable Alternate Injection, and the guest OS can use the
X2APIC GHCB protocol as it expects.

Multi-Processor Considerations
The APIC emulation state is normally expected to be consistent across processors, except for
those periods of time when all vCPUs are in the process of disabling Alternate Injection.
Consequently, consistency will be enforced when additional vCPUs are created through the SVSM
Core Protocol. When creating a new vCPU via the Core Protocol, the supplied VMSA must set its
SEV features to match the Alternate Injection state of the calling vCPU. If a vCPU that has enabled
Alternate Injection supplies a VMSA with Alternate Injection disabled, or if a vCPU that has disabled
Alternate Injection supplies a VMSA with Alternate Injection enabled, the Create vCPU call will fail
with SVSM_ERR_INVALID_PARAMETER.

Scheduling Considerations
When Alternate Injection is active, the SVSM is solely responsible for causing interrupts to be
presented to a lower VMPL, but the SVSM is not always aware of the precise time that such
interrupts are scheduled for delivery by the hypervisor. It is possible that additional interrupts
become scheduled while the SVSM is executing its exit flow to return to a lower VMPL, and has
already passed the point where it has made its determination about whether to deliver an interrupt
to a lower VMPL. Consequently, the SVSM must be designed so that once it passes the point where
it commits to entering the lower VMPL, any delivery of #HV that indicates interrupt delivery to the
lower VMPL will cause it to cancel the VMGEXIT that would cause a return to the lower VMPL, so
that it can process the interrupt that has been signaled.

6

Changes to GHCB Guest Non-Automatic Exits

Configure Injection Notification Vector (0x8000_0019)
This call configures the interrupt vector that will be signaled by the hypervisor whenever it needs to
notify the SVSM that interrupt injection processing is required.

Upon entry to the hypervisor, SW_EXITINFO1 is defined such that bits [7:0] contain the interrupt
vector that will be signaled when the SVSM is notified of pending injection processing; other bits
are reserved and should be zero. This interrupt will be delivered as an edge-triggered interrupt.

This call can only be issued by VMPL 0. If this call is issued by any other VMPL, it is considered an
error.

Disable Alternate Injection (0x8000_001A)
This call requests the hypervisor to disable Alternate Injection for a specific VMPL. Any interrupts
present in the appropriate extended interrupt vector will be placed into the IRR of the hypervisor-
emulated APIC and delivered to the target VMPL using direct event injection. As with proxy
interrupt messages sent by the hypervisor via the #HV doorbell page, if bits 10 and 14 are clear,
then bits 7:0 specify a single, edge-triggered interrupt vector pending delivery, or zero if no interrupt
is pending delivery. If bit 14 is set, then only those bits in the extended interrupt vector
corresponding to interrupts in the range 31-255 will be placed into the IRR as edge-triggered
interrupts. If bit 10 is set, then the interrupt vector indicated by bits 7:0 will be placed into the IRR
as a level-sensitive interrupt (the hypervisor is already required to keep track of any other level-
sensitive interrupts that are pending delivery. Reverting to hypervisor APIC emulation also requires
knowledge of which interrupt(s), if any, have been placed into service. Therefore, the 32 bytes that
follow the extended interrupt vector associated with the target VMPL are defined as an ISR vector,
indicating which edge-triggered interrupts are already in service (the hypervisor is already required
to keep track of which level-sensitive interrupts are currently in service). Only bits corresponding
to interrupt vectors in the range 31-255 have meaning; the other bits are reserved. The SVSM must
clear any data in this ISR area before writing ISR bits.

This call can only be issued by VMPL 0. If this call is issued by any other VMPL, it is considered an
error.

Upon entry to the hypervisor, SW_EXITINFO1 is defined as follows.

- SW_EXITINFO1[19:16] – VMPL for which Alternate Injection is being deactivated.
- SW_EXITINFO1[15:8] – Virtual TPR for the target VMPL.
- SW_EXITINFO1[1] - Interrupt shadow state of the target VMPL.
- SW_EXITINFO1[0] - EFLAGS_IF value of the target VMPL.

#HV Timer (0x8000_0016)
The #HV Timer NAE currently defined is extended to permit signaling of timer interrupts by a lower
VMPL. Not all SVSM implementations of Alternate Injection support will choose to implement the

7

timer features of the APIC. In this case, the lower VMPL will continue to make use of the #HV Timer
Guest NAE calls to configure timer support. The hypervisor must always interpret this NAE to be
specific to the calling VMPL, and must not permit timer requests from VMPL to affect timer state of
another VMPL. If the hypervisor determines that the timer interrupt is due for a VMPL that has
Alternate Injection active, then it will schedule delivery of the interrupt specified in the Timer LVT
entry by proxying that interrupt to the SVSM.

From the point of view of the guest, any timer signaled in this way will appear to be a host-
generated interrupt, so the vector must be configured by the guest OS as an allowed vector using
the APIC Protocol.

Specific EOI (0x8000_001B)
This call requests the hypervisor to perform an EOI cycle on a level-sensitive interrupt. Such an EOI
must be performed on a specific EOI to avoid race conditions in which the hypervisor presents a
new level-sensitive interrupt while the SVSM is attempting to complete an EOI on a lower-priority
level-sensitive interrupt.

Upon entry to the hypervisor, SW_EXITINFO1 is defined as follows:

- SW_EXITINFO1[19:16] – VMPL for which the EOI applies.
- SW_EXITINFO1[7:0] – The vector for which the EOI applies.

All other bits in SW_EXITINFO1 are reserved and must contain zero. SW_EXITINFO2 must contain
zero.

SVSM Protocol Changes
When Alternate Injection is active, only the SVSM can manage interrupt delivery for a lower VMPL.
A new SVSM protocol is defined to enable the lower VMPL to configure its APIC state through the
SVSM.

In general, the APIC configuration protocol simply requires routing APIC register read and write
requests to the SVSM. However, a guest OS generally expects that only certain interrupt vectors
can be signaled via the APIC (a guest OS may, for example, assume that certain IDT vectors can
only be invoked through execution of a software interrupt, and never through an external hardware
interrupt), and therefore the untrusted hypervisor must not have the ability to signal arbitrary
interrupt vectors to the lower VMPL. Therefore, the APIC protocol also requires the guest OS to
advise the SVSM of which interrupt vectors are permissible to deliver.

SVSM APIC Protocol
Protocol number 3 is defined as the APIC Protocol.

The APIC Protocol is supported only as long as Alternate Injection is enabled. If the SVSM is unable
to enable Alternate Injection because the hypervisor does not support the necessary guest/host

8

interaction protocols, the SVSM will suppress availability of the APIC Protocol. Similarly, if
Alternate Injection is ever disabled as the result of a guest call, the SVSM will suppress availability
of the SVSM protocol.

Query Features (Call 0)
This call (SVSM_APIC_QUERY_FEATURES) permits the guest to determine which APIC features are
supported. If the APIC protocol is supported at all, then basic APIC functionality related to
interrupt delivery is supported, including the following registers: APIC ID, IRR, ISR, LDR, DFR, TMR,
TPR, PPR, EOI, ICR, and self-IPI. Only IPIs of the Fixed or NMI types are considered part of basic
APIC functionality.

This call has no inputs. Upon completion of the call, EAX contains the return code from the call,
and ECX contains a bitmask of supported features.

- Bit 0 indicates support for timer functionality (Timer LVT, divide configuration, initial count,
and current count). If timer functionality is not supported, the guest must rely on the
hypervisor to emulate timer support through use of the #HV Timer GHCB protocol.

- Bit 1 indicates support for INIT and SIPI delivery. If INIT and SIPI delivery are not supported,
the guest may use INIT and SIPI signals to start additional vCPUs within the invoking VMPL.
Note that even if INIT and SIPI are supported, the guest must still use the VMSA creation
calls of the SVSM Core Protocol to start additional vCPUs so that the Calling Area address
for each vCPU can be configured correctly.

- Future bits are reserved and may be defined to include performance counters or other
architectural interrupt sources.

APIC Emulation Configuration (Call 1)
This call modifies the configuration of APIC emulation in the SVSM, as either Enabled, Locked, or
Disabled as defined above in the “Supporting Multiple Guest Runtimes” section.

When APIC emulation has been disabled, the SVSM will suppress the APIC protocol; it will not be
advertised as an available protocol and all protocol calls will fail with
SVSM_ERR_UNSUPPORTED_PROTOCOL.

The Enabled/Disabled state is recorded separately for every vCPU. If the guest VMPL (such as the
virtual firmware) wishes to disable Alternate Injection, it must issue a call separately on each vCPU
that it has started.

The Locked state is recorded globally within the SVSM. If APIC emulation has been locked by any
vCPU, then it cannot be disabled on any vCPU; any such attempt will return the error code
SVSM_ERR_APIC_CANNOT_DISABLE (0x8000_1000). If APIC emulation has been disabled on any
vCPU, then it cannot be locked by any vCPU; any such attempt will return the error code
(SVSM_ERR_APIC_CANNOT_LOCK (0x8000_1001).

Upon entry to this call, RCX should contain the desired state.

9

- RCX=0 indicates a request to enter the Disabled state.
- RCX=1 indicates a request to enter the Enabled state.
- RCX=2 indicates a request to enter the Locked state.

Any other value in RCX will return the error SVSM_ERR_INVALID_PARAMETER.

Read APIC Register (Call 2)
This call (SVSM_APIC_READ_REGISTER) permits the guest to read an APIC register. Upon entry,
ECX contains the X2APIC MSR number corresponding to the APIC register, in the range 0x800-
0x8FF. Upon successful completion of the call, RDX contains the value of the register. Reading the
ICR Low MSR (0x830) will return the entire 64-bit value of the Interrupt Control Register. If ECX
contains an illegal or unsupported MSR number, then SVSM_ERR_INVALID_ADDRESS will be
returned. If APIC emulation is not active, then SVSM_ERR_INVALID_REQUEST will be returned.

Write APIC Register (Call 3)
This call (SVSM_APIC_WRITE_REGISTER) permits the guest to write an APIC register. Upon entry,
ECX contains the X2APIC MSR number corresponding to the APIC register, in the range 0x800-
0x8FF, and RDX contains the value of the register. Writing the ICR Low MSR will write the entire 64-
bit value of the Interrupt Control Register. If ECX contains an illegal or unsupported MSR number,
SVSM_ERR_INVALID_ADDRESS will be returned. If ECX contains an MSR number that does not
support writing, then SVSM_ERR_INVALID_PARAMETER will be returned. If APC emulation is not
active, then SVSM_ERR_INVALID_REQUEST will be returned.

Configure Interrupt Vector (Call 4)
This call (SVSM_APIC_CONFIGURE_VECTOR) permits the guest to designate an interrupt vector as
permissible or impermissible for the hypervisor to deliver. If a vector is designated as permissible,
then the SVSM will signal that vector whenever it has been scheduled for delivery by the hypervisor
(regardless of whether the source of the interrupt is legitimate or spurious). If a vector is designated
as impermissible, then the SVSM will prevent that vector from being delivered to the guest, and will
simply acknowledge the interrupt with the hypervisor without processing it any further (if the
interrupt is level-sensitive, the SVSM will perform an EOI with the hypervisor without delivering it to
the guest OS). Upon entry to the call, bits 7:0 of ECX contain the vector number in the range 0x1F-
0xFF, and bit 8 indicates whether the vector is permissible (bit 8=1) or impermissible (bit 8=0). All
other bits are reserved. Enabling or disabling vector 2 will enable or disable the host to present an
NMI. If an invalid vector number is specified, or any reserved bit is set, then
SVSM_ERR_INVALID_PARAMETER will be returned. If APIC emulation is not active, then
SVSM_ERR_INVALID_REQUEST will be returned.

Core Calling Area Changes
Byte offset 2 of the Calling Area is defined to permit acceleration of End-of-Interrupt signaling
without having to invoke the SVSM explicitly. Byte 2 is defined as “No EOI Required”, similar to the
NoEoiRequired field in the #HV doorbell page.

10

When the SVSM delivers an interrupt, and no lower priority interrupt is pending, the SVSM will set
NoEoiRequired to 1, indicating that it is possible for the guest to complete an EOI without having to
write to the APIC EOI register. When the guest is ready to perform an EOI, it must perform an
interlocked exchange to write the value zero into the NoEoiRequired field (this must be an
interlocked operation in case the SVSM is invoked to perform interrupt processing, interrupting the
guest’s logic to examine NoEoiPending). If the previous value is non-zero, then the EOI is complete
and no further action is required, but if the previous value is zero, then the guest perform an explicit
EOI cycle by issuing the SVSM_APIC_WRITE_REGISTER call). If the SVSM delivers an interrupt, and
a lower interrupt is also pending, then the SVSM will set NoEoiRequired to zero. Similarly, if the
SVSM schedules an interrupt while a higher priority interrupt is already in service, the SVSM will
clear the NoEoiPending field to indicate that an explicit EOI cycle will be required to cause the
pending lower priority interrupt to be delivered.

Pseudocode

Hypervisor Interrupt Signaling
let descriptor := extended descriptor for target VMPL;
if one interrupt is pending
 descriptor[7:0] := vector;
 descriptor[14] := 0;
 perform internal EOI if vector is edge-triggered
else
 descriptor[7:0] := highest pending level-sensitive interrupt, or zero if none;
 if any other edge-triggered interrupts are pending {
 descriptor[14] := 1;
 copy edge-triggered interrupts into descriptor bitmap;
 perform internal EOI for all pending edge-triggered interrupts;
 endif
endif
doorbell.flags[10, 9, or 8] := 1 based on target VMPL;
if doorbell.flags[10, 9, or 8] was previously zero
 signal notification interrupt to SVSM;
endif

Consuming interrupts
if interlocked test and reset (doorbell.flags[8]) != 0
 process interrupts for VMPL 1
endif
if interlocked test and reset (doorbell.flags[9]) != 0
 process interrupts for VMPL 2
endif
if interlocked test and reset (doorbell.flags[10]) != 0
 process interrupts for VMPL 3
endif

process interrupts:

let flags := interlocked exchange descriptor[15:0] with 0;
if flags[14] == 0
 let vector := descriptor[7:0];
 insert (vector) into the IRR;
 if flags[10] != 0
 insert (vector) into the TMR;
 else
 remove (vector) from the TMR;
 endif

11

else
 if flags[10] != 0
 let vector := descriptor[7:0];
 insert (vector) into the IRR;
 insert (vector) into the TMR;
 endif

 for each additional 16-bit word in the descriptor {
 let flags := interlocked exchange descriptor word with 0;
 if (flags != 0)
 insert each corresponding vector into the IRR;
 remove each corresponding vector from the TMR;
 endif
 end for
endif

